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Overview 
Goal: Obtain a reliable BCI classifier which does not need 

calibration and can continuously learn during a session 

To achieve this, we propose to jointly optimize decoder and paradigm 

This allows us to introduce a new unsupervised learning method for 

BCIs based on event-related potentials (ERP) called learning from 

label proportions (LLP, [1]). 

We found that combining LLP with another unsupervised method, 

namely Expectation-Maximization (EM, [2]) yields an extremely 

powerful unsupervised classifier named MIX [3] 

This MIX method can completely replace supervised classification 

methods on ERP data as shown in an online study 

 
 

 
 
 

 
 

 
Expectation-Maximization Learning from Label Proportions 

ü A probabilistic approach to 

classify ERP signals 

ü Heavily exploits the 

structure contained in the 

data by alternatively 

estimating a latent variable 

(=attended symbol) and 

optimizing the model 

parameters 

ü Depends on random 

initialization: Mostly 

works well, but has no 

guarantee 

ü An extremely simple, yet 

powerful approach to estimate 

average target and non-target 

ERPs without labels 

ü Relies on the existence of 

groups with different label 

proportions in the data 

ü Requires a paradigm 

modification (see Figure) 

ü Is guaranteed to find the 

correct class means 

ü However, convergence is 

rather slow 

MIX Method 

Schematic of LLP: (A) A trial consists of two interleaved sequences. 
(B) The first sequence (S1) only highlights normal symbols while the 
other (S2) shows ΨІΨ ς visual blanks ς as well. This leads to a higher 
target ratio in the first sequence.  (C) Knowing the ratios allows a 
class mean estimation by solving a linear system of two equations.  

(C) System of equations 

ü Analytical combination of LLP and EM: 

 

 

 

üWith optimal mixture coefficient: 

 

 

ü Formula assigns lower weight to that 

classifier which shows more variance 

ü This mean estimation is used in a 

version of LDA with pooled covariance 

(estimated without labels) 

LLP mean EM mean MIX mean 

Data 
ü 12 healthy young 

subjects performed a 

visual ERP-based 

spelling task with 32-

channel EEG 

ü They performed three 

blocks, each used a 

different classifier online 

(EM, LLP, MIX) 

ü The classifiers started 

from a random 

initialization and were 

retrained after each trial 

without using labels  
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Results 
ü Regarding binary target vs non-target accuracy, 

MIX defeats the other unsupervised methods 

(thin lines: individual subjects, thick line: average) 

ü 7 symbols (or ~3 mins or 500 unlabeled epochs) 

are enough to reach an average AUC of over 90%  

ü Even compared with a supervised LDA classifier 

trained on the first N characters, MIX performs on 

the same level after an initial ramp-up 
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