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# Goal: Obtain a reliable BCI classifier which does not need
calibration and can continuously learn during a session
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# To achieve this, we propose to jointly optimize decoder and paradigm >2 1= gNT T gIJJN
# This allows us to introduce a new unsupervised learning method for S1 _ ENT 4 1—6MN
BCls based on event-related potentials (ERP) called learning from | 18 13
label proportions (LLP, [1]).
# We found that combining LLP with another unsupervised method, S2
namely Expectatlo.n-I\/IaXImlz_a}tlon (EM, [2]) yields an extremely Schematic of LLP: (A trial consists of two interleaved sequences.
powerful unsupervised classifier named MIX [3] (B) The firstsequence (SIgnly highlights normal symbols while the
# This MIX method can completely replace supervised classification other (S2) show# I¢ Ysual blankg as well. This leads to a higher
methods on ERP data as shown in an online study target ratio in the first sequence(C)Knowing the ratiosllowsa

class mean estimation by solving a linear system of two equations.

Expectation-Maximization Learning from Label Proportions MIX Method
i A probabilistic approach to i An extremely simple, yet U Analytical combination of LLP and EM:
classify ERP signals owerful approach to estimate ~ _ ~ »
o | p o _ a(y) = (1 =) fan + Vi
i Heavily exploits the average target and non-target
- i ERPs without labels v
thgcg; rjtgﬁgf;?\?eels n the © Rel h o f MIX mean LLP mean EM mean
U elies on the existence o . a g . . L
estimating a latent variable groups with different label U With optimal mixture coefficient:
(=attended symbol) and proportions in the data v s (Zd Varlivd = 2.qVar fizdl 1)
C .. | | 9 N — a2 |
optlmlzTg the model i Requires a paradigm | — fazl|
eSS modification (see Figure) U Formula assigns lower weight to that
U !Dgper_\ds on random i Is guaranteed to find the classifier which shows more variance
:/C(I)trll?slzl \fvaetlllogﬁlvlh(;ssflxo correct class means 0 This mean estimation is used in a
guarantee’ i However, convergence is version of LDA with pooled covariance
rather slow (estimated without labels)
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Data Results

U 7 symbols (or ~3 mins or 500 unlabeled epochs)

U 12 healthy young U Regarding binary target vs non-target accuracy, are enough to reach an average AUC of over 90%
subjects performed a MIX defeats the other unsupervised methods . . . .
isuyal ERP-based e . S U Even compared with a supervised LDA classifier
visua ase (thin lines: individual subjects, thick line: average) rainad on the first N ch t MIX perf
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